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A novel application of the transient hot-wire technique for thermal conductivity
measurements is described. The new application is intended to provide an
accurate means of implementation of the method to the determination of the
thermal conductivity of solids exemplified by a standard reference ceramic material.
The methodology makes use of a soft-solid material between the hot wires of
the technique and the solid of interest. Measurements of the transient tempera-
ture rise of the wires in response to an electrical heating step in the wires over a
period of 20 ms to 10 s allows an absolute determination of the thermal conduc-
tivity of the solid. The method is based on a full theoretical model with equa-
tions solved by finite-element method applied to the exact geometry. The uncer-
tainty achieved for the thermal conductivity is better than ± 1%, and for the
product (rCp) about ± 3%. The whole measurement involves a temperature rise
less than 4 K.
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1. INTRODUCTION

During the last two decades the transient hot-wire technique has successfully
been applied to the measurement of the thermal conductivity of gases [1]
and liquids [2] over a very wide range of temperatures and pressures,
excluding the critical region. Indeed, the technique has now been recognized
[3] as an absolute technique able to measure the thermal conductivity of



fluids with an uncertainty of about ± 0.5%. In the case of fluids, two thin
wires have been employed to eliminate end effects, acting as the transient
heating source and at the same time as a thermometer registering the fluid
temperature rise at the wire surface. Typical temperature rises are about
3 K attained in a time of about 1 s.

The application of the technique to the measurement of the thermal
conductivity of solids has not, however, been that successful. Four main
variations of the technique can be found in the literature:

(a) The oldest variation is that initially employed by Haupin [4] in
1960, whereby a thermocouple with its junction placed in the
middle of the sample, is heated with an alternating current. At
the same time, a filter network is used to eliminate the ac heating
current, allowing the thermocouple emf to be measured.

(b) The second method was developed by Mittenbühler [5] and
formed the basis of methods for a German standard [6] and a
European standard [7] in use today. The method employs a
heating wire of one metal with a thermocouple welded to the
heating wire in the form of a cross. An ac or dc power source can
be employed, and the temperature rise generated by a known
heating power is used to determine the thermal conductivity.

(c) The parallel method, also adopted as a European standard [8] in
1998, places the thermocouple some distance from the heating
wire (usually about 1 mm). The theory of the method is therefore
slightly different but the principle remains the same. A variation
of this method is the probe method according to which the wire
and the thermocouple are placed in a ceramic tube [9] and the
ceramic tube itself is placed inside the solid material.

(d) All the aforementioned methods employ a thermocouple for the
temperature measurement and hence measure only at one point.
To obtain a better average measurement of the temperature, the
resistance of the heating wire can be recorded during the mea-
surement [10]. Thus, the wire acts both as the heating source
and as a thermometer. This is generally achieved employing a
resistance bridge.

All four methods are characterized by similar problems:

(i) To avoid problems of thermal resistance, the wire (and the thermo-
couple) are placed in a groove on the surface of a block of the
solid while another block of the solid is placed over them. Both
solid surfaces have to be very flat while powder from the solid
takes up the empty space between the wire and groove.
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(ii) The above arrangement still produces a contact resistance, so large
temperature rises of 10 to 20 K are usually employed coupled
with large time scales, i.e., usually 1 to 10 min, so that tempera-
ture gradients are reduced. This means that large blocks of solids
must be used so that the temperature front does not meet the
outer extremes of the solid.

(iii) To obtain the thermal conductivity, an approximate analysis is
employed. The thermal conductivity is obtained from the slope
of a straight portion of the temperature rise vs. the logarithm of
the time curve. Laborious analyses have been employed [11] to
define this straight portion in the temperature rise curve.

(iv) The use of large diameter heater and thermocouple wires, of
which appropriate account is not taken and variations of heater
current [12], have resulted in large discrepancies among the
results.

(v) Finally, it should be emphasized that none of the methods has
been supported by a rigorous absolute theory.

The uncertainty of the above methods ranges to about 5 to 10%.
Other applications of wires to the measurement of the thermal con-

ductivity have made use of a spiral wire to generate a plane source of heat,
for which the one-dimensional theory is often adequate to permit reliable
relative measurements [13]. However, that application is more similar to a
transient hot disc rather than the transient hot wire considered here.

The present paper will describe a novel approach that, backed by a
fully developed theoretical model and elimination of the above problems, is
able to measure the thermal conductivity of solids with an absolute uncer-
tainty of better than ± 1%, at least, in the case of the ceramics to which it
is applied here for the first time.

2. THEORETICAL

2.1. Fundamental Equations

In the transient hot-wire technique, the temporal rise of a thin wire
immersed in a test material, initially at thermal equilibrium, is observed
following the application of a step voltage across the wire. The wire acts as
a heat source and produces a time-dependent temperature field within
the test material. When measurements are carried out in such a way as to
minimize radiative effects and the material is isotropic with temperature-
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independent thermal conductivity, density, and heat capacity, the temperature
gradient is described by the equation

rCp
“T
“t
=lN2T (1)

where, r, Cp, and l are the density, the isobaric heat capacity, and
the thermal conductivity of the test material, while T is the absolute
temperature.

The geometry of the transient hot wire proposed here for the mea-
surement of the thermal conductivity of solids is shown in Fig. 1. The wire
is placed between two semi-infinite blocks of solid of width ‘‘b.’’ Between
the wire and the solid, it will be assumed that there is a thin layer of
another material; this is maybe air (if no attempt is made to eliminate
contact resistance) or a soft solid such as silicone paste (if such attempts are
made). Equation (1) must be applied to three distinct regions: to the wire
(subscript ‘‘w’’), to the intermediate layer (subscript ‘‘m’’), and to the solid
(subscript ‘‘s’’). It is assumed that, from an initial equilibrium state in
which T=T0 everywhere, heat is generated in the wire at a rate q per unit
length. The system is considered infinitely long along the wire axis, and
that in essence, the solid blocks are large enough to be considered as infinite
in the x and y directions. The full set of equations is shown in Appendix A,

Fig. 1. Schematic diagram of the two-wire sensor.
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Table AI, while in Table AII the same equations are also shown in dimen-
sionless form. There is no analytic solution of these equations, and they are
to be solved by a two-dimensional finite-element analysis.

In order to make this finite-element solution rapid and accurate, we
employ a representation of the circular wire by a square of side ‘‘a,’’ so that
we may use rectangular coordinates everywhere, as has been demonstrated
[14] that this representation is quite sufficient to secure high accuracy in
the theoretical description of the temperature rise of a circular cross-section
wire in similar circumstances. This is also demonstrated in Appendix B,
where the aforementioned representation of the wire as a mesh of rectan-
gular elements, is compared with a more precise mesh, which is a combi-
nation of both triangular and rectangular elements. Both arrangements,
when employed in the analysis of liquid toluene data, produced the same
value of the thermal conductivity within its uncertainty. Hence, the first
arrangement was preferred due to its speed of conversion.

To solve the aforementioned equations, a 441 element, 2-D rectan-
gular variable size mesh is assumed. The mesh in the wire, as well as in the
intermediate layer and in the two interfaces, is quite dense. The elements’
size increases inside the solid the further they are located from the interface.

3. EXPERIMENTAL

3.1. The Wire Sensor

The aforementioned equations refer to the temporal temperature
change of the wire-intermediate layer-solid system. To measure this tem-
perature rise, the resistance of the heating wire itself is recorded. Further-
more, as will be discussed later, two identical wires differing only in length
are employed. This arrangement corresponds to the resistance change of
a finite segment of an infinitely long wire [15].

The two-wire arrangement employed for the present measurements of
the thermal conductivity at atmospheric pressure is shown in Fig. 1. The
two wires, placed one after the other, are made out of 25-mm-diameter tan-
talum and have lengths of 6.3 cm and 1.8 cm, respectively. They are spot
welded to flattened 0.5-mm-diameter tantalum wire supports, which in turn
are connected to thick copper rod contacts. To heat the wires and measure
their resistance at the same time, an automatic bridge controlled by a
computer was employed.

3.2. Measurement Bridge Circuit

As already discussed, the purpose of employing the electronic bridge in
the transient hot-wire instrument is twofold: first, to measure the evolution
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of the resistance change of a finite segment of infinite wire (by automati-
cally compensating for axial heat conduction from the wire ends), and
second, to ensure that a known constant heat flux is generated in the hot
wires.

This is achieved by placing two identical wires of different length and
resistance in the two arms of a Wheatstone-type bridge circuit (Fig. 2). In
this way the bridge becomes sensitive to the difference in resistance of the
two wires, which is equivalent to the resistance of a segment of an infinite
wire. The temperature rise, which is required to calculate the thermal
conductivity, can then be calculated from the temperature—resistance
characteristics of the hot wires.

The principal characteristics of the bridge circuit are:

(a) the direct measurement of the out-of-balance voltage during the
transient run,

(b) the ability to begin measurements from 20 ms after the initiation
of heating and to obtain a large number of data points, and

(c) a temperature resolution of 5 mK and time resolution of 1 ms.

Fig. 2. The bridge circuit.
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A transient measurement run is initiated by adjusting the variable resistors
R1 and R2 (Resistance Box RBC5A, Cropico Ltd., UK) using a low
voltage (0.5 V); typically, R1 % RL and R2 % RS, where RL and RS are the
resistances of the long and short wire (Fig. 2). RA, RB, RC, and RD (Fig. 2)
denote the lead resistances of the two wires, respectively. Balancing of the
bridge is performed corresponding to the zero-voltage level set by two
identical resistors R3. Simultaneous switching on two MOSFET switches
then activates the bridge. This applies a constant voltage across the bridge
circuit, which is supplied from a dc programmable dual power supply
(TSP3222, Thurbly Thandar Ltd., UK). The output signal of the bridge is
then preamplified, converted by an analogue-to-digital (A/D) converter
(24-bit, 16-channel multiplexed conversion, PC30AT Amplicon Liveline
Ltd., UK), and then the data points are subsequently stored in the compu-
ter that controls the measurement. A data acquisition program drives the
electronics and automates the transient measurement.

In the bridge, two MOSFET switches have been employed to symme-
trically switch on (’100–200 ns) the bridge about earth ground. This reduces
the common-mode transient signal (< 20 mV) at the sensing terminals of the
bridge to a level where measurements can begin 20 ms after the initiation of
the experiment. The resulting reduction of the common mode signal allows
the differential amplifier to be connected directly to the bridge without
causing saturation overload. The differential amplifier also acts as a ‘‘buffer’’
between the bridge and the external measuring electronics, which prevents
the introduction of noise into the bridge circuit itself. The A/D converter has
a maximum conversion rate of 50 kHz (20 ms) and a precision in time of
± 1 ms. It enables a large number of data points to be obtained over the mea-
surement interval, in fact, more than can be practically analyzed.

A seven-digit high-resolution digital voltmeter (HP 34401A, Hewlett
Packard), capable of 1000 readings per second, is also used. Its function is
threefold: first, it is used to measure the supply voltage during the transient
run, second, it is used to measure the voltage across the bridge resistances
during the steady-state run, including a standard resistorRStd=10W (Tinsley),
which provides a reference for the measurements, and third, it is used to
calibrate the A/D converter.

3.3. Working Equations

The bridge circuit, shown in Fig. 2, has been designed to measure the
evolution of the resistance change of a finite portion of an infinite wire, by
automatically compensating for wire ends, and to generate a nearly con-
stant heat flux in the hot wires of known magnitude. In this section, the
working bridge equations are derived from an analysis of the circuit.
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By placing two identical wires of different length in the arrangement
shown in Fig. 2, it is possible to compensate for the wire ends, as the bridge
is arranged to calculate the difference of the resistances of the two wires
and, thus, wire-end resistances are cancelled out. That is, if we assume that
the wires have identical ends and the lead resistances of the two wires are
also the same,

RA+RC=RB+RD (2)

then, by solving the bridge circuit, the expression for the change in resis-
tance of a hypothetical segment of an infinite ‘‘working’’ wire DRW(t)=RW(t)
−RW(0) as a function of time t can be expressed as

DRW(t)

=

DVCE(t)
VS

SR(0)2

SR(0) 11+RS(0)
RW(0)
2−RF(0) 11+2 RS(0)RW(0)

2−DVCE(t)
VS

SR(0) 11+2 RS(0)
RW(0)
2

(3)

where RW(t) and RW(0) denote the resistance of the ‘‘working’’ wire at any
time and at zero time (t=0), respectively, defined as

RW(t)=RL(t)−RS(t) (4)

and

RW(0)=RL(0)−RS(0) (5)

In the above equations, RL(t) and RL(0) are the resistances of the long wire
at time t and at zero time (t=0), RS(t) and RS(0) are the resistances of the
short wire at time t and at zero time (t=0), DVCE(t) is the measured out-of-
balance voltage, and VS is the supply voltage. SR(0) is the sum of the
resistances of the left-hand side of the circuit at zero time, as

SR(0)=R1+RA+RS(0)+RB+RC+RL(0)+RD+R2+RStd (6)

and RF(0) is the sum of the bottom arm resistances,

RF(0)=RC+RL(0)+RD+R2+RStd (7)

Equation (3) implies that by implementing the present bridge design,
shown in Fig. 2, it is possible to calculate the resistance change for a
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hypothetical segment of an infinite wire with the knowledge of the follow-
ing information:

(a) the ratio of the out-of-balance voltage and the supply voltage
DVCE(t)/VS at time t,

(b) the total resistance of the left-hand arm of the circuit SR(0) and
the bottom arm resistance RF(0) at zero time, and

(c) the ratio of the short to the ‘‘working’’ wire resistance RS(0)/
RW(0) at zero time.

Over the small temperature interval (about 3 K) of the measurement,
the temperature rise of the hot wire can be expressed as

DT=
DRW(t)

aL(T, T0) RW(0)
(8)

where aL(T, T0) is the pseudo-linear-temperature coefficient of resistance,
obtained as

aL(T, T0)=
a+b[2(T−273.15)−(T−T0)]
1+a(T0−273.15)+b(T0−273.15)2

(9)

where the initial temperature is taken as the reference temperature T0, and
a and b are the first and second temperature-resistance coefficients of the
material of the wires.

The above analysis presupposes the generation of a constant heat flux
within the long and short wire. The implication in this statement is that the
same constant current must therefore flow through both wires. Since the
resistance of both wires is changing with time, the current also necessarily
changes. However, the change in the resistance difference of the two
wires, over a single-measurement interval, is of the order of 10−3 Ohm. This
corresponds to a change of current, of the order of 10−6 A (assuming
SR(0) % 50 Ohm, and VS % 5 V), which in turn results to a change of the
heat flux per unit length of the order of 10−6 W · m−1 (when typical values
of heat flux per unit length employed are about 3 W · m−1). Hence, both the
heat flux per unit length and the current, can safely be considered as constants.

Thus, the same current I1 flows through both wires. Analyzing the
bridge circuit it can be shown that the heat flux per unit length of the
middle portion of the long wire, at any instant t, can then be expressed as

q=
V2S

3R1+RA+RB+RC+RD+R2+RStd+
RW(t)(LL+LS)
LL−LS

42
RW(t)
LL−LS

(10)
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where LL and LS are the lengths of the long and short wires, respectively.
Finally, we should note that as a result of the manufacturing process of
‘‘thin’’ hot wires (and the wire supports), it is difficult to ensure that the
cross section of the two wires is uniform, which may result in a small
variation in the resistance per unit length of the wires. A small correction is
hence applied to the measured temperature rise and heat flux, as described
elsewhere [15]. At any specific time, from the resistance measurement of
the bridge the temperature rise of a section of the wire is calculated via
Eq. (8).

Using the finite element solution outlined above, an estimate of the
theoretical temperature rise of the wire may be generated from assumed
values of l and (rCp) for tantalum, for the imtermediate layer, and for the
test solid, given the dimensions of the wire, the thickness d of the inter-
mediate layer and the heat input to the wire. In practice l, and (rCp)
of tantalum are known so that for a given measurement there are five
unknown quantities:

(a) the thermal conductivity lS, and the product (rSCpS) for solid
and

(b) the thermal conductivity lm, the product (rmCpm), and the
thickness of the intermediate layer.

Adjustment of all five variables leads to their evaluation, when the theore-
tical curve is brought into coincidence with that experimentally determined.
In practice, the characteristics of the intermediate layer are evaluated from
measurements at very short time, whereas those of the solid are derived
essentially independently from results at longer times. The five quantities
are uniquely determined because some thousand measurements of the
temperature rise are accumulated during one run.

3.4. Steady-State Measurement

In order to measure the temperature rise during a run, the total resis-
tance of the left-hand arm of the circuit SR(0), the bottom arm resistance
RF(0), and the ratio of the short to the ‘‘working’’ wire resistance
RS(0)/RW(0), all at zero time, are required. It is not possible to obtain all
the necessary measurements from a single run. First, a transient run is per-
formed to measure the out-of-balance voltage and the supply voltage, and
then a steady-state run is carried out to determine the values of the bridge
resistances at zero time.

The application of a voltage across the hot wires, which is necessary
when making a measurement, makes the measurement of the initial resis-
tances (i.e., at t=0) of the wires difficult. To overcome this problem a
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steady-state run follows the transient run. This involves the application of
three pre-set supply voltages: 0.5, 1.0, and 1.5 V and the measurement of
the voltages across various bridge resistors. The data are stored and are
later treated. It can be shown that it is possible to fit and extrapolate the
data set by a process of linear regression in order to obtain the value at
zero voltage of the resistances of three elements of the bridge. The voltage
is measured across points (Fig. 2) AB, AC, AD, AE, and AF. From a
single circuit analysis, the following relationships can be written:

VAB
VS
=
RStd
SR(0)

VAC
VS
=
RStd+R2
SR(0)

(11)

VAD
VS
=
RF(0)
SR(0)

VAE
VS
=
RF(0)+RS(0)+R1

SR(0)
(12)

VAF=VS (13)

Hence, the values of the unknown resistances SR(0), RF(0), RL(0), RS(0),
R1 and R2 are calculated from the known value of the standard resistor RStd.
Values of lead resistance are measured during the assembly of the wires.

4. MEASUREMENTS

A measurement of the thermal conductivity is accomplished in the
following manner. The bridge is balanced, and the transient run is started
by the application of the voltage and the consequent recording of the out-
of-balance points up to the required time. About 500 to 1000 such readings
are automatically recorded. Following that, the steady-state measurements
are automatically performed. From the bridge equation, Eq. (3), for every
specific time, the resistance change can be obtained, and thus the corre-
sponding temperature rise via Eq. (8). In this way, the full experimental
temperature rise vs. time curve is obtained. This curve should be identical
with the curve produced by the solution of the equations, in Table AII of
Appendix A, by the finite-element analysis. The only unknowns in the
latter case are the thermal conductivity and the (rCp) of the material.
Hence, by superimposing the two curves (experimental and finite-element
predicted), the thermal conductivity and the (rCp) of the material are
obtained. These two quantities are obtained by trial and error; we note
however that the value of the thermal conductivity mostly affects the slope
of the curve while the product (rCp) results in a vertical shift.

The temperature and time uncertainty produce an error of much less
than 0.1% to the final value of the thermal conductivity. No theoretical
approximations are made. The uncertainty of the measurements is estimated
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to be better than ± 1% as derived from the sensitivity of the thermal con-
ductivity value to the superimposition of the experimental and predicted
curves. In general, it is noteworthy that the thermal conductivity of the
solid material influences the slope of the whole curve, while the changes in
the product (rCp) produces a shift of the curve parallel to the temperature
axis. The uncertainty associated with the evaluation of the product (rCp)
for the solid is 3%. This illustrates that the use of an absolute rigorous
theory has the advantage of yielding the product (rCp) of the solid material
as well as its thermal conductivity.

4.1. Validation of Technique

An advantage of the proposed configuration is that, it can also be
employed to measure the thermal conductivity of fluids. Liquid toluene has
been proposed by the Subcommittee on Transport Properties of the Inter-
national Union of Pure and Applied Chemistry as a standard with an
uncertainty of 0.5% [16].

In this case, the sensor was placed in toluene at 295.15 K, and the
equations were solved with the intermediate and solid layers substituted by
liquid toluene. In Fig. 3 we can see the temperature rise. For this run 500
readings were employed from 0 to 1 s, with a temperature rise of 5 K.
As can be seen, the experimental and predicted FEM curves coincide
for the values l=0.1301 W · m−1 · K−1 and (rCp)=1.47 × 106 J · m−3 · K−1

for toluene. The equivalent recommended values [16] are l=0.1305

Fig. 3. Experimental and predicted temperature rise in toluene.
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W · m−1 · K−1 and (rCp)=1.47 × 106 J · m−3 · K−1. This confirms our obser-
vations that the method can determine the thermal conductivity in an
absolute way with an uncertainty of better than ± 1%, and the product
(rCp) with 3%.

4.2. Ceramic Material

The sensor with the two wires was subsequently placed between two
pieces of Pyroceram 9606. This material is a glassy ceramic, originally
developed by NASA, and since it is particularly well defined and thermally
stable, it is a certified reference material for thermal conductivity by the
National Institute of Standards and Technology, U.S.A., and a currently
considered a candidate by the National Physical Laboratory, U.K. Its
thermal conductivity had been calibrated by Anter Corporation, USA, lS=
3.995 W · m−1 · K−1. Its density, rS, was found to be equal to 2596 kg · m−3,
and its specific heat capacity, CpS, is 788 J · kg−1 · K−1 (Anter Corporation,
USA). The pieces of 10 × 5 × 2 cm3 were kept in place by a weight over
them, and were maintained at 298.15 K, while the air gap between them
was 30 mm. With this setup the temperature rise was recorded for 20 s. The
theoretical calculation shown in Fig. 4 assumes perfect thermal contact
between the wire and the ceramic and the known values of the properties of
the pyroceram. It can be seen that the two curves differ in temperature rise
by more than a factor of 2 at long times. Detailed analysis demonstrates
that this is entirely due to the very different slope at small times, which
arises from the existence of an air gap in the experimental arrangement. No

Fig. 4. Experimental and predicted temperature rise in pyroceram (with air gap).
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realistic adjustment of the properties of the solid can bring the theoretical
and experimental curves into coincidence.

The aforementioned phenomenon has been observed by many workers
in the field. The proposed solution has been to fill the air gap with powder
from the material. Since the pyroceram is a hard material, this idea was
tried with a softer ceramic (IEC 672-3, Ceram CA’B Slovakia). In this case
the gap was filled by powder from the ceramic and a weight was placed
over it. In Fig. 5, a similar situation is observed. The temperature differ-
ence between the two curves is reduced by adding powder, but they are still
0.9 K apart.

In order to eliminate any remaining contact resistance, the gap
between the wire and the ceramic was filled with a silicone paste (heat
transfer compound, HTCO2S, Electrolube). A further advantage is that the
measurement can now be achieved in the following way:

– At small times (t < 0.15 s) the heat wave generated is confined to the
paste. Since the bridge can be operated from 20 ms, we can employ it
at this time interval to obtain the unknown properties of the paste.

– Having obtained these, at larger times we can solve for the two
layers for the properties of the pyroceram.

Indeed, in Fig. 6, the experiment only up to 0.12 s is shown to obtain the
properties of the silicone paste. The two curves coincide for the values
lm=0.4707 W · m−1 · K−1 and (rmCpm)=1.08 × 106 J · m−3 · K−1 for the sili-
cone paste. With these values, in Fig. 7, a measurement in pyroceram with

Fig. 5. Experimental and predicted temperature rise in ceramic (with gap filled with
powder).
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Fig. 6. Experimental and predicted temperature rise in silicone paste.

silicone paste is shown. The only unknowns here were, the thickness of the
silicone paste layer and the properties of the pyroceram. The values
obtained were lS=4.005 W · m−1 · K−1 and (rSCpS)=2.086×106 J · m−3 · K−1

(actually CpS=803.7 J · kg−1 · K−1, rS=2596 kg · m−3 as the sample was
weighted). As already stated, this sample of pyroceram is a reference
material with l=3.995 W · m−1 · K−1 and Cp=788 J · kg−1 · K−1. Hence, we
see that the proposed method is able to measure the thermal conductivity
with very small uncertainty.

Fig. 7. Experimental and predicted temperature rise in pyroceram (with silicon paste).
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5. CONCLUSIONS

A novel application of the transient hot-wire technique has been
described. The wires placed in a soft silicone paste between the ceramic
material allow, at very small times, the calculation of the unknown properties
of the soft paste and with these values, at larger times, the calculation of the
thermal conductivity and the product (rCp) of the ceramic material. The
method is based on a full theoretical model with equations solved by finite
elements for the exact geometry. The uncertainty achieved for the thermal
conductivity is better than ± 1%, and for the product (rCp) is about 3%.

It should further be noted that, the whole measurement take place in
about 10 to 20 s, during which the temperature rise is less than 4 K.

APPENDIX A: THE WORKING EQUATIONS

Table AI. Working Equations

Equations

Tantalum wire rwCpw
“Tw
“t
=lw 5“

2Tw
“x2
+
“
2Tw
“y2
6+q
a2

Intermediate layer rmCpm
“Tm
“t
=lm 5“

2Tm
“x2
+
“
2Tm
“y2
6

Solid rsCps
“Ts
“t
=ls 5“

2Ts
“x2
+
“
2Ts
“y2
6

Solved subject to the following boundary and initial conditions:

Boundary conditions

(1) Wire-Intermediate layer interface: y=± a2 , x=0 to ± a2 ; x=±
a
2 , y=0 to ± a2

Tw=Tm, lw
“Tw
“x
=lm

“Tm
“x

and lw
“Tw
“y
=lm

“Tm
“y

t > 0

(2) Intermediate layer—Solid interface: y=±d, x=0 to ± b2

Tm=Ts, lm
“Tm
“x
=ls

“Ts
“x

and lm
“Tm
“y
=ls

“Ts
“y

t > 0

(3) x=. or y=. Tw=Tm=Ts=T0 t > 0

Initial condition

(4) t=0 Tw=Tm=Ts=T0 any x, y
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Table AII. Working Equations in Dimensionless Form

Dimensionless variables

T*=(T−T0)
l

q
, t*=

kw
a2
t where kw=

lw

rwCpw
and x*=

x
a
, y*=

y
a

Equations

Tantalum wire
“Tg

w

“t*
=5“2T

g
w

“xg2+
“
2Tg
w

“yg2
6+1

Intermediate layer
rmCpm
rwCpw

“Tg
m

“t*
=
lm

lw

5“2Tg
m

“xg2+
“
2Tg
m

“yg2
6

Solid
rsCps
rwCpw

“Tg
s

“t*
=
ls

lw

5“2Tg
s

“xg2
+
“
2Tg
s

“yg2
6

Solved subject to the following boundary and initial conditions:

Boundary conditions

(1) Wire-Intermediate layer interface: y*=± 12 , x*=0 to ± 12 ; x*=±
1
2 , y=0 to ± 12

Tg
w=T

g
m,

“Tg
w

“x*
=
“Tg

m

“x*
lm

lw
and

“Tg
w

“y*
=
“Tg

m

“y*
lm

lw
t* > 0

(2) Intermediate layer—Solid interface: y*=± da, x*=0 to ± b
2a

Tg
m=T

g
s ,

“Tg
m

“x*
=
“Tg

s

“x*
ls

lm
and

“Tg
m

“y*
=
“Tg

s

“y*
ls

lm
t* > 0

(3) x*=. or y*=. Tg
w=T

g
m=T

g
s=T

g
0 t* > 0

Initial condition

(4) t*=0 Tg
w=T

g
m=T

g
s=T

g
0 any x, y
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Fig. B1. Representation of the circular wire with two different
meshes.

APPENDIX B

In order to establish the suitability of the representation of the circular
wire as a mesh of rectangular elements, a test with liquid toluene was
carried out. The results were analysed with two different types of meshes,
as shown in Fig. B1. Although the second mesh, is a much better represen-
tation of the circular wire, the data obtained, produced the same value of
the thermal conductivity within its uncertainty. Hence, the first arrange-
ment was preferred due to its speed of conversion.
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